Filtros : "FFCLRP" "Reino Unido" "Tapia-Blacido, Delia Rita" Limpar

Filtros



Refine with date range


  • Source: International Journal of Food Science and Technology. Unidades: FZEA, FFCLRP

    Subjects: FILMES COMESTÍVEIS, QUITOSANA, ANTIOXIDANTES, BIOPOLÍMEROS, MICROENCAPSULAÇÃO, CENOURA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPOSTO, Bruno Stefani et al. Chitosan films activated with phytochemicals extracted from carrot by-product encapsulated in TPP chitosomes. International Journal of Food Science and Technology, v. 59, n. 3, p. 1384-1393, 2024Tradução . . Disponível em: https://doi.org/10.1111/ijfs.16883. Acesso em: 30 abr. 2024.
    • APA

      Esposto, B. S., Tessaro, L., Aguilar, G. J., Sobral, P. J. do A., Tapia-Blacido, D. R., & Martelli-Tosi, M. (2024). Chitosan films activated with phytochemicals extracted from carrot by-product encapsulated in TPP chitosomes. International Journal of Food Science and Technology, 59( 3), 1384-1393. doi:10.1111/ijfs.16883
    • NLM

      Esposto BS, Tessaro L, Aguilar GJ, Sobral PJ do A, Tapia-Blacido DR, Martelli-Tosi M. Chitosan films activated with phytochemicals extracted from carrot by-product encapsulated in TPP chitosomes [Internet]. International Journal of Food Science and Technology. 2024 ; 59( 3): 1384-1393.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1111/ijfs.16883
    • Vancouver

      Esposto BS, Tessaro L, Aguilar GJ, Sobral PJ do A, Tapia-Blacido DR, Martelli-Tosi M. Chitosan films activated with phytochemicals extracted from carrot by-product encapsulated in TPP chitosomes [Internet]. International Journal of Food Science and Technology. 2024 ; 59( 3): 1384-1393.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1111/ijfs.16883
  • Source: Trends in Food Science & Technology. Unidade: FFCLRP

    Subjects: AMIDO, RESÍDUOS, POLÍMEROS (MATERIAIS), EMBALAGENS, BIODEGRADAÇÃO AMBIENTAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAPIA-BLACIDO, Delia Rita et al. Trends and challenges of starch-based foams for use as food packaging and food container. Trends in Food Science & Technology, v. 119, p. 257-271, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.tifs.2021.12.005. Acesso em: 30 abr. 2024.
    • APA

      Tapia-Blacido, D. R., Aguilar, G. J., Andrade, M. T. de, Rodrigues-Júnior, M. F., & Guareschi-Martins, F. C. (2022). Trends and challenges of starch-based foams for use as food packaging and food container. Trends in Food Science & Technology, 119, 257-271. doi:10.1016/j.tifs.2021.12.005
    • NLM

      Tapia-Blacido DR, Aguilar GJ, Andrade MT de, Rodrigues-Júnior MF, Guareschi-Martins FC. Trends and challenges of starch-based foams for use as food packaging and food container [Internet]. Trends in Food Science & Technology. 2022 ; 119 257-271.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.tifs.2021.12.005
    • Vancouver

      Tapia-Blacido DR, Aguilar GJ, Andrade MT de, Rodrigues-Júnior MF, Guareschi-Martins FC. Trends and challenges of starch-based foams for use as food packaging and food container [Internet]. Trends in Food Science & Technology. 2022 ; 119 257-271.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.tifs.2021.12.005
  • Source: Trends in Food Science and Technology. Unidades: FFCLRP, FZEA

    Subjects: ENCAPSULAMENTO ELETRÔNICO, QUITOSANA, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPOSTO, Bruno Stefani et al. Liposomes vs. chitosomes: encapsulating food bioactives. Trends in Food Science and Technology, v. 108, p. 40-48, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.tifs.2020.12.003. Acesso em: 30 abr. 2024.
    • APA

      Esposto, B. S., Jauregi, P., Tapia-Blacido, D. R., & Martelli-Tosi, M. (2021). Liposomes vs. chitosomes: encapsulating food bioactives. Trends in Food Science and Technology, 108, 40-48. doi:10.1016/j.tifs.2020.12.003
    • NLM

      Esposto BS, Jauregi P, Tapia-Blacido DR, Martelli-Tosi M. Liposomes vs. chitosomes: encapsulating food bioactives [Internet]. Trends in Food Science and Technology. 2021 ; 108 40-48.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.tifs.2020.12.003
    • Vancouver

      Esposto BS, Jauregi P, Tapia-Blacido DR, Martelli-Tosi M. Liposomes vs. chitosomes: encapsulating food bioactives [Internet]. Trends in Food Science and Technology. 2021 ; 108 40-48.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.tifs.2020.12.003
  • Source: Handbook of food nanotechnology: applications and approaches. Unidades: FZEA, FFCLRP

    Subjects: NANOCOMPOSITOS, NANOTECNOLOGIA, EMBALAGENS DE ALIMENTOS, PLÁSTICOS BIODEGRADÁVEIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTELLI-TOSI, Milena et al. Reinforced nanocomposites for food packaging. Handbook of food nanotechnology: applications and approaches. Tradução . London: Academic Press, 2020. . Disponível em: https://doi.org/10.1016/B978-0-12-815866-1.00014-5. Acesso em: 30 abr. 2024.
    • APA

      Martelli-Tosi, M., Esposto, B. S., Silva, N. C. da, Tapia-Blacido, D. R., & Jafari, S. M. (2020). Reinforced nanocomposites for food packaging. In Handbook of food nanotechnology: applications and approaches. London: Academic Press. doi:10.1016/B978-0-12-815866-1.00014-5
    • NLM

      Martelli-Tosi M, Esposto BS, Silva NC da, Tapia-Blacido DR, Jafari SM. Reinforced nanocomposites for food packaging [Internet]. In: Handbook of food nanotechnology: applications and approaches. London: Academic Press; 2020. [citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/B978-0-12-815866-1.00014-5
    • Vancouver

      Martelli-Tosi M, Esposto BS, Silva NC da, Tapia-Blacido DR, Jafari SM. Reinforced nanocomposites for food packaging [Internet]. In: Handbook of food nanotechnology: applications and approaches. London: Academic Press; 2020. [citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/B978-0-12-815866-1.00014-5
  • Source: Polymers and Polymer Composites. Unidade: FFCLRP

    Subjects: AMIDO, MANDIOCA, BIODEGRADAÇÃO, ABACAXI, BIOMATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABANILLAS, Arnold et al. Pineapple shell fiber as reinforcement in cassava starch foam trays. Polymers and Polymer Composites, v. 27, n. 8, p. 496-506, 2019Tradução . . Disponível em: https://doi.org/10.1177/0967391119848187. Acesso em: 30 abr. 2024.
    • APA

      Cabanillas, A., Nuñez, J., Cruz-Tirado, J. P., Vejarano, R., Tapia-Blacido, D. R., Arteaga, H., & Siche, R. (2019). Pineapple shell fiber as reinforcement in cassava starch foam trays. Polymers and Polymer Composites, 27( 8), 496-506. doi:10.1177/0967391119848187
    • NLM

      Cabanillas A, Nuñez J, Cruz-Tirado JP, Vejarano R, Tapia-Blacido DR, Arteaga H, Siche R. Pineapple shell fiber as reinforcement in cassava starch foam trays [Internet]. Polymers and Polymer Composites. 2019 ; 27( 8): 496-506.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1177/0967391119848187
    • Vancouver

      Cabanillas A, Nuñez J, Cruz-Tirado JP, Vejarano R, Tapia-Blacido DR, Arteaga H, Siche R. Pineapple shell fiber as reinforcement in cassava starch foam trays [Internet]. Polymers and Polymer Composites. 2019 ; 27( 8): 496-506.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1177/0967391119848187
  • Source: Packaging Technology and Science. Unidade: FFCLRP

    Subjects: INDÚSTRIA AGRÍCOLA, BIODEGRADAÇÃO AMBIENTAL, AMIDO, BATATA-DOCE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ-TIRADO, Jam Pier et al. The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packaging Technology and Science, v. 32, n. 5, p. 227-237, 2019Tradução . . Disponível em: https://doi.org/10.1002/pts.2429. Acesso em: 30 abr. 2024.
    • APA

      Cruz-Tirado, J. P., Vejarano, R., Tapia-Blacido, D. R., Angelats-Silva, L. M., & Siche, R. (2019). The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packaging Technology and Science, 32( 5), 227-237. doi:10.1002/pts.2429
    • NLM

      Cruz-Tirado JP, Vejarano R, Tapia-Blacido DR, Angelats-Silva LM, Siche R. The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams [Internet]. Packaging Technology and Science. 2019 ; 32( 5): 227-237.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1002/pts.2429
    • Vancouver

      Cruz-Tirado JP, Vejarano R, Tapia-Blacido DR, Angelats-Silva LM, Siche R. The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams [Internet]. Packaging Technology and Science. 2019 ; 32( 5): 227-237.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1002/pts.2429
  • Source: Carbohydrate Polymers. Unidades: FZEA, FFCLRP

    Subjects: MATERIAIS NANOESTRUTURADOS, BIOFILMES, HIDRÓLISE, RESÍDUOS AGRÍCOLAS, PALHAS, SOJA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTELLI-TOSI, Milena et al. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, v. 198, p. 61-68, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2018.06.053. Acesso em: 30 abr. 2024.
    • APA

      Martelli-Tosi, M., Masson, M. M., Silva, N. C., Esposto, B. S., Barros, T. T., Assis, O. B. G. de, & Tapia-Blacido, D. R. (2018). Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, 198, 61-68. doi:10.1016/j.carbpol.2018.06.053
    • NLM

      Martelli-Tosi M, Masson MM, Silva NC, Esposto BS, Barros TT, Assis OBG de, Tapia-Blacido DR. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films [Internet]. Carbohydrate Polymers. 2018 ; 198 61-68.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2018.06.053
    • Vancouver

      Martelli-Tosi M, Masson MM, Silva NC, Esposto BS, Barros TT, Assis OBG de, Tapia-Blacido DR. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films [Internet]. Carbohydrate Polymers. 2018 ; 198 61-68.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2018.06.053
  • Source: Carbohydrate Polymers. Unidades: FZEA, FFCLRP

    Subjects: PALHAS, SOJA, PROTEÍNAS, BIOFILMES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTELLI-TOSI, Milena et al. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydrate Polymers, v. 157, p. 512-520, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2016.10.013. Acesso em: 30 abr. 2024.
    • APA

      Martelli-Tosi, M., Assis, O. B. G. de, Silva, N. C., Esposto, B. S., Martins, M. A., & Tapia-Blacido, D. R. (2017). Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydrate Polymers, 157, 512-520. doi:10.1016/j.carbpol.2016.10.013
    • NLM

      Martelli-Tosi M, Assis OBG de, Silva NC, Esposto BS, Martins MA, Tapia-Blacido DR. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films [Internet]. Carbohydrate Polymers. 2017 ; 157 512-520.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2016.10.013
    • Vancouver

      Martelli-Tosi M, Assis OBG de, Silva NC, Esposto BS, Martins MA, Tapia-Blacido DR. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films [Internet]. Carbohydrate Polymers. 2017 ; 157 512-520.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2016.10.013
  • Source: Carbohydrate Polymers. Unidade: FFCLRP

    Subjects: HIDRÓLISE, MICROSCOPIA ELETRÔNICA DE VARREDURA, MATERIAIS NANOESTRUTURADOS, AMIDO (METABOLISMO)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE-MAHECHA, Margarita María et al. Achira as a source of biodegradable materials: isolation and characterization of nanofibers. Carbohydrate Polymers, v. 123, p. 406-415, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2015.01.027. Acesso em: 30 abr. 2024.
    • APA

      Andrade-Mahecha, M. M., Pelissari, F. M., Tapia-Blacido, D. R., & Menegalli, F. C. (2015). Achira as a source of biodegradable materials: isolation and characterization of nanofibers. Carbohydrate Polymers, 123, 406-415. doi:10.1016/j.carbpol.2015.01.027
    • NLM

      Andrade-Mahecha MM, Pelissari FM, Tapia-Blacido DR, Menegalli FC. Achira as a source of biodegradable materials: isolation and characterization of nanofibers [Internet]. Carbohydrate Polymers. 2015 ; 123 406-415.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2015.01.027
    • Vancouver

      Andrade-Mahecha MM, Pelissari FM, Tapia-Blacido DR, Menegalli FC. Achira as a source of biodegradable materials: isolation and characterization of nanofibers [Internet]. Carbohydrate Polymers. 2015 ; 123 406-415.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.carbpol.2015.01.027
  • Source: LWT - Food Science and Technology. Unidade: FFCLRP

    Subjects: BIOFILMES, AÇAFRÃO, CORANTES, ANTIOXIDANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANIGLIA, Bianca Chieregato et al. Turmeric dye extraction residue for use in bioactive film production: optimization of turmeric film plasticized with glycerol. LWT - Food Science and Technology, v. 64, n. 2, p. 1187-1195, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.lwt.2015.07.025. Acesso em: 30 abr. 2024.
    • APA

      Maniglia, B. C., Paula, R. L. de, Domingos, J. R., & Tapia-Blacido, D. R. (2015). Turmeric dye extraction residue for use in bioactive film production: optimization of turmeric film plasticized with glycerol. LWT - Food Science and Technology, 64( 2), 1187-1195. doi:10.1016/j.lwt.2015.07.025
    • NLM

      Maniglia BC, Paula RL de, Domingos JR, Tapia-Blacido DR. Turmeric dye extraction residue for use in bioactive film production: optimization of turmeric film plasticized with glycerol [Internet]. LWT - Food Science and Technology. 2015 ; 64( 2): 1187-1195.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.lwt.2015.07.025
    • Vancouver

      Maniglia BC, Paula RL de, Domingos JR, Tapia-Blacido DR. Turmeric dye extraction residue for use in bioactive film production: optimization of turmeric film plasticized with glycerol [Internet]. LWT - Food Science and Technology. 2015 ; 64( 2): 1187-1195.[citado 2024 abr. 30 ] Available from: https://doi.org/10.1016/j.lwt.2015.07.025

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024